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COMPUTATIONAL MODELLING OF IMPACT
DAMAGE IN BRITTLE MATERIALS

G. T. CAMACHO* and M. ORTIZt
Division of Engineering, Brown University, Providence, RI 02912, U.S.A.

Abstract-A Lagrangian finite element method of fracture and fragmentation in brittle materials is
developed. A cohesive-law fracture model is used to propagate multiple cracks along arbitrary
paths. In axisymmetric calculations, radial cracking is accounted for through a continuum damage
model. An explicit contact/friction algorithm is used to treat the multi-body dynamics which
inevitably ensues after fragmentation. Rate-dependent plasticity, heat conduction and thermal
coupling are also accounted for in calculations. The properties and predictive ability of the model
are exhibited in two case studies: spall tests and dynamic crack propagation in a double cantilever
beam specimen. As an example of application of the theory, we simulate the experiments of Field
(1988) involving the impact of alumina plates by steel pellets at different velocities. The calculated
conical, lateral and radial fracture histories are found to be in good agreement with experiment.
Copyright © 1996 Elsevier Science Ltd.

I. INTRODUCTION

The response of brittle materials to impact loading has been extensively investigated exper­
imentally (Shockey etal., 1974; Grady and Kipp, 1979; Ahrens and Rubin, 1993; Lankford,
1977,1983; Longy and Cagnoux, 1989; Espinosa et al., 1992; Shockey et al., 1990a;
Woodward et aI., 1994). In particular, particle impact studies (Bowden and Field, 1964;
Field, 1971, 1988; Tsai and Kolsky, 1967; Arbiter, 1969; Cherepanov and Sokolinsky,
1972; Evans et al., 1977, 1978; Knight et al., 1977; Shockey et al., 1990b), in which,
typically, a metallic pellet strikes a glass, ceramic or rock plate, provide a means of
identifying the failure modes of projectile and target for a wide range of impact velocities.
Specimens and pellets undergo inelastic deformations and sustain damage ranging in severity
from surface cracks at low impact velocities, variously developed conical, lateral and
radial fractures at intermediate speeds, and catastrophic fragmentation at sufficiently high
velocities.

By way of contrast, the assessment of impact performance of brittle materials by
computer simulation remains an elusive goal. Current models are, for the most part, based
on continuum damage theories in which the net effect offracture is idealized as a degradation
of the elasticity of the material (Seaman et al., 1985; Curran et aI., 1987, 1993; Walter,
1992; Johnson et al., 1992; Rajendran, 1994). In addition, fragmentation has often been
modelled by recourse to global energy balance concepts (Grady and Kipp, 1993). However,
continuum theories of fracture and fragmentation suffer from obvious shortcomings. Thus,
the discrete nature of cracks is lost in these theories. In homogeneizing a cracked solid,
sweeping assumptions must necessarily be made regarding the distribution and geometry
of the cracks, which at best are described by a few state variables, and their interactions.
The determination of the effective properties of a cracked solid under dynamic conditions
presents additional difficulties stemming from the finite speed at which signals propagate
between cracks (Freund, 1990). However, perhaps the most fundamental objection to
continuum theories is that the failure of a brittle specimen is frequently governed by the
growth of a single dominant crack, a situation which is not amenable to homogeneization.
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In this paper, we depart from continuum damage theories and investigate the feasibility
of accounting explicitly for individual cracks as they nucleate, propagate, branch and
possibly link up to form fragments. Cracks are allowed to fonn and propagate along
element boundaries in accordance with a cohesive-law model (Ortiz and Suresh, 1993; Xu
and Needleman, 1994). Clearly, it is incumbent upon the mesh to provide a rich enough set
of possible fracture paths, an issue which we address within the framework of adaptive
meshing. In contrast to other approaches (Ortiz and Suresh, 1993; Xu and Needleman,
1994) which require interfacial elements to be inserted at the outset along potential fracture
paths, we adaptively create new surfaces as required by the cohesive model by duplicating
nodes along previously coherent element boundaries. The cohesive fracture model and its
finite element implementation are discussed in Section 7.

In cases in which profuse cracking takes place, fractures inevitably intersect to fonn
discrete fragments. The complicated arrangements of bodies and boundaries which arise
can be conveniently described hierarchically as discussed in Section 2. If the extent of
fragmentation is sufficiently severe, the comminuted phase flows as a granular material.
Under these conditions, the multiple collisions and frictional interactions between the
fragments have to be monitored efficiently. In particular, the large number of simultaneous
contacts requires the contact search algorithm to be optimized for computational efficiency.
Algorithmically demanding contact situations, such as those involving sharp portions of
fragment surfaces, occur with some frequency and need to be resolved expediently. The
contact/friction algorithm employed in calculations is described in Section 4.

While the methodology developed here applies equally in two and three dimensions,
the scale of the calculations can be reduced considerably in problems possessing axial
symmetry, e.g., nonnal impact by a solid of revolution. If the calculations are restricted to
a meridional plane, thereby effecting a much desirable reduction in dimensionality, radial
cracks can no longer be monitored explicitly and have to be modelled in a continuum
sense. The computational pay-off in these cases is considerable enough that, by way of
compromise, we adopt a hybrid fonnulation in which conical and lateral cracks are modelled
discretely while radial cracks are modelled continuously.

Under severe conditions, the projectile and the target can undergo extensive plastic
defonnations and temperature rises. A sizeable fraction of the plastic work is converted
into heat, which is also generated at frictional contacts. The mechanical and thermal
equations are fully coupled as a consequence of thennal softening. The integration of the
coupled thenno-mechanical equations is discussed in Section 5. Damage and plasticity may
also be expected to be coupled, as the presence of microcracks introduces local stress
concentrations which may in turn drive plastic defonnation. Additionally, the pressures
under the impactor can rise to very high values. Under these conditions, the conventional
flow theories of plasticity have to be augmented by a suitable equation of state for the
volumetric response. The constitutive framework adopted in calculations is described in
Section 6. A related endeavor concerns the development of robust finite elements which
retain adequate perfonnance under extreme conditions of pressure and deformation.
Matters of finite element design are briefly addressed in Section 2.

We have validated and calibrated the theory by simulating standard spall and double
cantilever tests in some detail. The results are collected in Section 8. As an application of
the theory, in Section 9 we present simulations of the pellet-plate impact experiments of
Field (1988). The insights revealed by these tests as regards the predictive ability and
limitations of the theory are briefly discussed in Section 10.

2. SYSTEM REPRESENTATION

In a typical impact event, the computational model originally comprises a small
collection of intact bodies. However, after extensive fracture and fragmentation, the system
may come to be composed ofa multitude ofinteracting fragments. Indeed, in the simulations
envisioned here the fragments can readily number in the thousands. Evidently, an efficient
data structure needs to be designed for organizing and processing all the elements of the
model. Our approach is similar in spirit to the discrete element method (Cundall and Hart,
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Fig. 1. System hierarchy.

1992; Hocking, 1992), and allows the number of cracks and fragments to proliferate
without any bounds other than the limit to refinement imposed by the available computing
resources.

The system hierarchy adopted is shown in Fig. 1. As in other modelling approaches
(Baehmann et al., 1987; Peraire et al., 1987; Jin and Wiberg, 1990) the aim is to first define
the model geometry simply and subsequently discretize it into finite elements. At the top
level, the hierarchy comprises a set of bodies. A body in turn comprises a boundary and an
interior. In a two-dimensional context, each body is regarded as a patch bounded by
boundary curves. These curves are in turn defined by control nodes. The boundary of the
patch is composed of both exterior and interior surfaces. The latter may arise as cracks
nucleate in the interior of the body. The boundary is discretized into edges defined by
boundary nodes. The interior of the body is discretized into finite elements. In subsequent
developments we distinguish between exterior and interior nodes. Exterior or boundary
nodes are those which lie on the current boundary of the body. The remaining nodes are
identified as interior to the body. An example of the geometry and discretization of a system
is shown in Fig. 2.

The advancing front automatic mesh generation algorithm is employed to discretize
each patch into triangular finite elements from boundary information (Peraire et al., 1987;
Jin and Wiberg, 1990). The minimal amount of input data required renders the method
particularly attractive. The advancing front algorithm uses boundary nodes to define an
initial front from which interior nodes and elements are simultaneously generated. The
boundary information required by the advancing front method is also useful for defining
contact surfaces. In this context, the creation of cracks involves the modification of the
boundary edge and node information, followed by the addition of new bodies to the system
if complete fragmentation occurs. Continuous maintenance and tracking of the evolving
boundary and interior ensure the integrity of the system data structure throughout the
analysis.

The ability to construct meshes by triangulations simply and automatically provides
an incentive for the use of triangular elements. In applications such as envisioned here,
triangular elements offer the additional advantage of furnishing more potential fracture
surfaces than quadrilateral elements. First-order triangular elements suffer from volumetric
and shear locking which can result in gross inaccuracies (Nagtegaal et al., 1974), unless
meshed in a cross-triangle configuration. However, this configuration is generally incom­
patible with the unstructured meshes considered here. By contrast, six-noded elements with
linear strain interpolation do not lock (Hughes, 1987). In addition, the presence of midside
nodes in the six-node triangular element facilitates the initiation of interior cracks, as
discussed in Section 7.1.



2902 G. T. Camacho and M. Ortiz

Control Nodes -......
.~"-------'--------------6>

Patch 1

(a)

(b)

Boundary Nodes

Discrete Edges

Fig. 2. Example of system geometry and discretization.

Unfortunately, off-the-shelf Lagrangian six-noded elements give rise to unbalanced
midside and corner reactions bearing a 2: 1 ratio in regular meshes subjected to uniform
tractions, and the elements tend to perform poorly under severe impact conditions. Similar
pathologies afflict the lumped mass matrix. To sidestep these difficulties, we use an assumed
strain six-noded triangular element with linear stress and strain interpolation which is free
of volumetric locking while yielding balanced midside and corner reactions and masses in
the natural ratio of 1: 1 (Camacho, 1996). This ensures, for instance, that a uniform
acceleration is imparted to the nodes at the contact between a uniformly meshed straight­
sided body and a flat rigid plate, a clearly desirable attribute.

3. EQUATIONS OF MOTION

Consider a body initially occupying a reference configuration Eo, and a process of
incremental loading whereby the deformation mapping over Eo changes from tPn, at time
tm to tPn+l = tPn+u, at time tn+1 = tn+At. Dynamic equilibrium is enforced at time tn+1
weakly by recourse to the virtual work principle

where Pn+1 denotes the first Piola-Kirchhoff stress field at time tn+1> fn+1, an+ 1 and tn+1 are
the corresponding body forces, accelerations and boundary tractions, respectively, Po is the
mass density on the reference configuration, 'I is an admissible virtual displacement field,
and Vo denotes the material gradient. Upon discretization of (1) with finite elements the
governing equations become
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(2)

where M is a lumped mass matrix, Fext is the external force array including body forces and
surface tractions and F'nl is the internal force array arising from the current state of stress.

The second-order accurate central difference scheme is used to discretize (2) in time
(Hughes, 1987; Hughes and Belytschko, 1983; Belytschko, 1983), with the result

(3)

(4)

(5)

where d, v and a denote the displacement, velocity and acceleration arrays, respectively.
Explicit integration is particularly attractive in impact problems, since the resolution of the
various waves in the solution necessitates the use of small time steps well under the
stability limit (Hughes, 1983). In addition, explicit contact algorithms are more robust and
straightforward than their implicit counterparts, a distinct advantage in problems involving
fragmentation where complicated contact situations inevitably arise. Explicit integration is
also advantageous in three-dimensional calculations, where implicit schemes lead to system
matrices which often exceed the available in-core storage capacity. Yet another desirable
aspect of explicit algorithms is that they are ideally suited for concurrent computing
(Mathur et al., 1993).

4. CONTACT

In the applications of interest here, complicated contact situations develop which
involve multiple collisions between deformable bodies as well as self-contact across crack
surfaces. We have found the contact algorithm developed by Taylor and Flanagan (1987)
for the PRONT02D explicit dynamics code particularly effective in dealing with such
complex contact situations. In this approach, the bodies in contact can be deformable or
rigid. The contacting surfaces are designated as master and slave. A balanced master-slave
approach in which surfaces alternately act as master and slave is employed. However, rigid
surfaces are always treated as master surfaces.

The method starts with the calculation of predictor nodal positions, velocities and
accelerations x~~~, v~~~ and ~~~, respectively, assuming that no contact has occurred. A
predictor configuration where penetration has occurred is sketched in Fig. 3a. In enforcing
the contact conditions, it proves convenient to introduce an auxiliary consecutive numbering
of the nodes on the contacting surfaces. The penetration distances os.} for all nodes j on the
slave surface are then determined on the predictor configuration. Here and henceforth,
labels m and s are used to designate the master and slave surfaces, respectively. The contact

(a) (b)
Fig. 3. (a) Predictor configuration of surfaces. (b) Kinematically compatible surfaces.
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forces required to prevent penetration, were the master surface to remain stationary at the
predictor configuration, are given by:

(6)

where M sJ is the mass of node j on the slave surface. Next, normal acceleration corrections
are introduced which eliminate the unwanted penetration, Fig. 3b. The requisite accel­
erations are

L(WHmJP,)
i

aeorr _ -----,=------
m,k - M m.k +L(ws~mJMs) ,

}

p.
aeo!, = "" (w aear,) _ ~

SJ L. m~s,k m,k M
k s.}

(7)

(8)

where w HmJ and Wm~s,k are weights dependent on position. A Coulomb friction model is
also adopted from Taylor and Flanagan (1987). Let t represent the unit tangent to the
master segment. The tangential component of the relative predictor velocity between the
slave node and the master segment is then given by

(9)

The force that must be applied to the slave node to cancel its relative tangential velocity,
i.e., to produce perfect stick, is

Fstick =
S,j

(10)

The tangential force exerted by the master surface on a slave node cannot exceed the
maximum frictional resistance

(11)

where Fshearlimit accounts for the shear strength of the material and Ns,} is the normal contact
force given by

N,., = M s,} a~J' .n. (12)

Here n is the unit normal to the surface. The tangential force induces the tangential
acceleration corrections

aearr __ -----
m,k - M

m,k

(13)

(14)



Modelling of impact damage 2905

This completes the computation of the acceleration array. The corresponding displacement
and velocity corrections follow from (3) and (5).

The procedure just outlined tacitly presumes that the master segment which is pen­
etrated by each slave node during the time step is known. Because of the large number of
potential contacts, however, the evaluation of the contact conditions is a non-trivial task
which can be broken down into two steps: the contact search and the contact logic. For
every slave node, the contact search determines the set of nearest master nodes. On the
basis of this nearest-neighbor set, the contact logic subsequently determines the actual
master segment contacted by the slave node.

The exhaustive search of all master nodes constitutes an O(N2
) operation, where N is

the number of contact nodes. This operation count can be substantially improved for large
N (Hallquist et aI., 1985; Taylor and Flanagan, 1987; Zhong and Nilsson, 1990). Quadtree
searches (e.g., Lohner, 1988) are particularly effective for this purpose. The method requires
the master nodes to be arranged as a quadtree. Each level of the quadtree corresponds to
a partition of the contact nodes into four subdomains. The leaves of the tree consist of
domains containing at most four nodes. For each slave node, a quadtree search is then
performed which returns the Nnear nearest master nodes. The appropriate value of N near

depends on the relative sizes of the master and slave elements. The nearest-neighbor sets
are stored for subsequent use. The quadtree search is an O(Nlog (N» operation which is
performed only when the boundary state changes. This may occur due to the creation of
new crack nodes or when the contact logic detects contact with a master segment close to
the end of the nearest-neighbor set. The frequency of the quadtree searches is diminished
by the choice of a large Nnean but these gains occur at the expense of a higher storage
requirement. The optimal choice of Nnear therefore involves a memory-computational time
tradeoff.

For each slave node, the contact logic operation leading to the detection of active
contacts is performed on the Nnear nearest master nodes only. We follow the contact logic
developed by Taylor and Flanagan (1987), which may be consulted for specifics. In our
simulations however, situations frequently arise in which a number of sharp edges sim­
ultaneously come into contact, Fig. 4. In order to resolve these situations, we have aug­
mented the contact logic of Taylor and Flanagan (l987)-at some loss of computational
efficiency-by performing segment intersection calculations and by detecting instances in

Fig. 4. Example of multi-bodies and their contact surfaces.
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which, owing to a breakdown in the basic contact logic rules, a slave node strays into the
interior of a master element.

5. THERMAL EFFECTS

In the course of an impact event, substantial amounts of heat may be generated due
to the plastic working of the solid and friction at the contact surfaces. The temperatures
attained can be quite high and have a considerable influence on the mechanical response.
The relevant balance law to be considered in this case is the heat equation, which can be
expressed in weak form as

(15)

where p is the current mass density, c the heat capacity, T the spatial temperature field, 1]

an admissible virtual temperature field, h the outward heat flux through the surface, q is
the heat flux, s is the distributed heat source density, and B,q the current Neumann boundary.
The main sources of heat in our applications are plastic deformation in the bulk and
frictional sliding at the interfaces. The rate of heat supply due to the first is estimated as

s = f3W' (16)

where WP is the plastic power per unit deformed volume and the Taylor-Quinney (Taylor
and Quinney, 1931) coefficient f3 is of the order of 0.9 (e.g., Kobayashi et al., 1989). The
rate at which heat is generated at the frictional contact, on the other hand, is

h=t·[v] (17)

where t is the contact traction and [v] is the jump in velocity across the contact. This heat
must be apportioned between the bodies. Using transient half-space solutions, the ratio of
the heat supply to body 1, hI> and body 2, h2 can be computed as (Marusich and Ortiz,
1994)

hi ~

h2 Jk 2P2 C2

(18)

where k" p, and c" IX. = 1,2, are the thermal conductivity, mass density and heat capacity
of the contacting bodies.

Inserting the finite element interpolation into (15) results in the semi-discrete system
of equations (Belytschko, 1983)

ct+KT = Q (19)

where T is the array of nodal temperatures, C is the heat capacity matrix, K is the
conductivity matrix, and Q is the heat source array. In the applications of interest here, the
mechanical equations always set the critical time step for stability. It therefore suffices to
lump the capacitance matrix and integrate the energy eqn (19) explicitly by the forward
Euler algorithm (Hughes, 1987; Hughes and Belytschko, 1983; Belytschko, 1983), with the
result

(20)

(21)

A staggered procedure (Park and Felippa, 1983) is adopted for the purpose ofcoupling
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the thermal and mechanical equations. Mechanical and thermal computations are staggered
assuming constant temperature during the mechanical step and constant heat generation
during the thermal step. Following Lemonds and Needleman (1986), a mechanical step is
taken first based on the current distribution of temperatures, and the heat generated is
computed from (16) and (17). The heat thus computed is used in the thermal analysis where
temperatures are recomputed by recourse to the forward Euler algorithm (20) and (21).
The resulting temperatures are then used in the mechanical step and incorporated into the
thermal-softening model described in Section 6, which completes one time-stepping cycle.
A flowchart of the staggered procedure is shown in Box 1.

(i) Initialize T, = To+MTo, n = o.
(ii) Isothermal mechanical step:

(iii) Heat generation (bulk + contact)
(iv) Rigid conductor step:

{Xn+ 1, Vn + 1, 3 n + l , Tn+ 1} ~ {xn + l , vn+1,an+ 1, T n + 2 }

(v) n --> n + I, GOTO (ii).

Box I. Staggered procedure for thermo-mechanical coupling.

6. CONSTITUTIVE MODEL

During impact events, materials frequently experience considerable volumetric and
shear deformations. The volumetric or dilatational response is presumed to be governed by
an equation ofstate while the shear or deviatoric response is assumed to obey a conventional
flow theory ofplasticity. We begin by decomposing the Cauchy stress tensor into hydrostatic
and deviatoric components,

(22)

where p is the hydrostatic pressure and sij is the stress deviator.
We adopt an equation of state of the Mie-Gruneisen type,

(23)

where Jl = r 1_1, J = det F = PolP is the Jacobian of the deformation, F is the deformation
gradient, P is the current mass density, e is the internal energy per unit mass, r is the
Gruneisen coefficient and K[, K 2 and K 3 are material coefficients. In addition, a small
artificial bulk viscosity is introduced to prevent high velocity gradients from collapsing
elements and to quiet down ringing (Taylor and Flanagan, 1987). The viscous pressure
takes the form

(24)

where b l and b2 are constants, Cd is the dilatational wave speed, jlJ is the volumetric strain
rate and I is a typical element dimension. The principle of conservation of energy requires
the increase in internal energy ofany subbody to equal to the sum ofthe work ofdeformation
and the heat input into the subbody, leading to the identity
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(25)

where dij = (v i.j+vj,;)/2 is the rate of deformation tensor. In calculations, we update the
pressure and the internal energy by recourse to the integration scheme developed by Taylor
and Flanagan (1987).

For the deviatoric response we adopt a standard formulation of finite deformation
plasticity based on a multiplicative decomposition of the deformation gradient into elastic
and plastic components. We employ the fully implicit algorithm of Cuitifio and Ortiz (1992)
for performing the constitutive updates. In a typical impact penetration event, very high
strain rates in excess of lOS S-I may be attained. Under these conditions, a power viscosity
law with constant rate sensitivity m is not adequate. Indeed, the experimental stress-strain
rate curves for ceramics (Lankford, 1977, 1983; Steinberg, 1991) and metals (Klopp et al.,
1985; Clifton and Klopp, 1985; Zhou et al., 1992) exhibit a transition at strain rates of the
order of 103-106

S-I from low to high rate sensitivity. At low strain rates, a rate sensitivity
exponent in the range 40-100 adequately fits the data, while in the high strain rate regime
a much lower rate sensitivity exponent in the range 4-20 applies. A simple model which
accounts for this behavior consists of assuming a stepwise variation of the rate sensitivity
exponent m while maintaining continuity of stress (Marusich and Ortiz, 1994). This leads
to the relation

(26)

(27)

where (j is the effective Mises stress, 9 the flow stress, F/ the accumulated plastic strain, t~ a
reference plastic strain rate, ml and m2 are low and high strain rate sensitivity exponents,
respectively, and t, is the threshold strain rate which separates the two regimes. In calcu­
lations, we begin by computing tP according to (26), and switch to (27) if the result lies
above t/.

Following Lemonds and Needleman (1986), we also adopt a power hardening law
with linear thermal softening. This gives

(28)

where n is the hardening exponent, T the current temperature, To a reference temperature,
r:J. the thermal softening coefficient, and (Jy is the yield stress at To. It should be noted
that, owing to the staggered integration of the coupled thermal-mechanical equations, the
temperature T remains fixed during a mechanical step and, therefore, plays the role of a
known parameter during a stress update.

7. FRACTURE

In contrast to past and current approaches to fracture and fragmentation, which have
largely been based on continuum theories of damage and fragmentation (Seaman et al.,
1985; Curran et al., 1987; Johnson and Holmquist, 1992; Rajendran, 1994; Grady and
Kipp, 1993; Longy and Cagnoux, 1989; Espinosa et al., 1992), we explicitly follow the
initiation and propagation of multiple cracks. These cracks can branch and coalesce and
eventually lead to the formation of fragments. The creation of new surface is accomplished
by allowing initially coherent element boundaries to open according to a cohesive law
which models a gradual loss of strength with increasing separation. The cohesive law
determines the work of separation, or fracture energy, required for the complete formation
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Fig. 5. Potential fracture paths for (a) midside node, and (b) corner node.

of a free surface (Dugdale, 1960; Barrenblatt, 1962; Ortiz, 1988; Ortiz and Suresh, 1993;
Xu and Needleman, 1994).

The cracks which result from normal impact by an axisymmetric solid can be classified
into two main categories: conical and radial. Conical cracks intersect meridional planes at
right angles. We refer to the cracks contained in meridional planes as radial cracks. In
order to restrict the calculations to a meridional plane, thereby effecting a much desirable
reduction to two spatial dimensions, we develop a hybrid formulation in which conical
cracks are modelled discretely by their trace on meridional planes while radial cracks are
modelled by a distributed damage model. These aspects of the model are developed in
subsequent sections.

7.1. Conical cracks
We create new fracture surfaces by splitting nodes according to a brittle fracture

criterion. Midside nodes can only be split in one way, namely along the unique element
boundary crossing that node, Fig. 5a. By contrast, interior corner nodes can potentially
open up along multiple fracture paths, Fig. 5b, all of which need to be evaluated in turn.
To this end, we begin by computing the traction t acting at the node across all potential
fracture surfaces. The details of the calculation are given in Appendix A. The computed
tractions are resolved into normal and tangential components a and r, respectively,
Fig. 6a, b.

Consideration ofan effective stress intensity factor for mixed-mode fracture (Margolin,
1984; Dienes, 1986) leads to the fracture criteria

(29)

(30)

where {3, is a shear stress factor, J1 is the friction coefficient and air is a fracture stress. In

i
a
a
i

(a) (b)
Fig. 6. (a) Midside node traction forces t. (b) Normal and shear stresses (J and T.
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(a) (b)
Fig. 7. Tensile cohesive relation.

order to estimate ajn we assume that pre-existing flaws populate element boundaries as
arrays of collinear slit cracks of half-width Go. Then ajr follows from the toughness KIc of
the material as

Klc

atr = ~. (31)

When either of the critical conditions (29) or (30) is met, a new surface is introduced into
the mesh by suitably doubling nodes.

The cohesive forces which resist the opening and sliding of the new surface are assumed
to weaken irreversibly with increasing crack opening displacement, Fig. 7. If the opening
velocity changes sign, the cohesive forces are ramped down to zero as the opening dis­
placement itself diminishes to zero, in the spirit of damage mechanics (e.g., Kachanov,
1986). We differentiate between two cases:

1. Tensile case. When the normal opening displacement J" increases monotonically,
the cohesive stresses a and, are ramped down linearly as a function of J", Fig. 7a,
leading to the relations

a = ao (1- :" )
"cr

(32)

(33)

where J" and J, are the normal opening and sliding displacements, respectively, ao
and '0 are the normal and shear stresses at fracture initiation, respectively, and
sgn (x) = x/lxl is the signum function. The cohesive tractions reduce to zero at the
critical opening displacement J" = Jw . The new surface is then fully formed and
the cohesive tractions vanish thereafter. The area under the tensile cohesive law,
Gc = ao Jw /2, is the fracture energy measured in fracture tests. If, after some opening
displacement J"1 < J"cr the crack begins to close, the tractions obey the linear
unloading relation
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(34)

(35)

as shown in Fig. 7b. If the crack reopens, the unloading path is reversed up to bIT]
and, subsequently, the monotonic cohesive relations (32) and (33) are followed.

2. Compressive case. If the tangential displacement b, increases monotonically in
magnitude, the cohesive shear stress T is ramped down linearly according to the
relation

(36)

where To is the shear stress at fracture initiation, Fig. 8a. The shear stress T reduces
to zero at the critical sliding displacement IbTI = bw . The new surface is then
presumed fully formed and the cohesive tractions vanish thenceforth. Contrariwise,
if the direction of shearing is reversed from a sliding displacement IbT]1 < bun the
shear traction obeys the linear unloading/reloading relation

(37)

as shown in Fig. 8b. As in the tensile case, the reloading curve simply retraces the
unloading path until it rejoins the monotonic cohesive law (36). Since the crack is
closed in the compressive case, contact normal and shear tractions act concurrently
with the cohesive shear stress.

7:0

Orer
(a)

Fig. 8. Shear cohesive relation.
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Fig. 9. Crack system.

The crack system of Fig. 9 exemplifies capabilities in our fracture model such as : crack
initiation at surfaces and in the interior; and crack propagation, branching and arrest.
Additionally, crack closure may result in contact and/or frictional sliding of the crack
flanks. The frictional contact conditions resulting from crack closure are enforced with the
aid of the contact algorithm discussed in Section 4.

(i) Initialize kbody = I.
(ii) Gather list of N mid interior midside nodes of body kbvdy and the elements attached to them. Initialize

kmid = I.
(iii) Compute effective stress (J'ff at midside node km'd' If (J'tt ~ (Jtn create a crack by doubling the

midside node. At each external corner node connected to the midside node, double the corner node.
Perform bookkeeping operations.

(iv) If k mid < N mid then kmid ---> kmid+ I, GOTO (iii).
(v) Gather list of NCO' exterior corner nodes of body kbodr and the elements attached to them. Initialize

k
w

= 1. .
(vi) At each interior edge attached to the corner node kwn compute effective stress (J'tt at the corner

node. If (J'ff ~ (Jtn create crack by doubling the corner node. Perform bookkeeping
operations.

(vii) If keo, < Nev, then kev, ---> kev,+ I, GOTO (vi).
(viii) If kbody < N hody then k hvdy ---> khody + I, GOTO (ii).

Box 2. Fracture procedure.

Some issues of implementation are noteworthy. The main steps of the fracture pro­
cedure are outlined in Box 2. For modularity and efficiency, each body is processed
independently. The fracture criterion is evaluated at all potential crack paths. In particular,
at corner nodes all the interior sides of the surrounding elements need to be evaluated.
After a crack is created, some bookkeeping operations have to be performed, including (a)
storing the cohesive forces for use in the explicit integration procedure in (4), (b) renum­
bering the nodes of the elements, (c) updating the system information: creating a new body
if a new crack splits a current body; updating the discrete edge and boundary node lists.
Operations (b) and (c) are necessary to preserve the integrity of the system information.

7.2. Radial fracture
We account for conical and lateral cracks explicitly through our fragmentation model.

However, in order to keep the calculations axisymmetric, we resort to a continuum damage
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model to account for radial cracking. The theory ofdamage adopted endeavors to represent
the weakening effect on the material of nearly co-planar radial microcracks. Fracture
patterns of this type can be effectively modelled within the framework of one-dimensional
damage theories (Kachanov, 1986; Krajcinovic and Lemaitre, 1987). In addition, the
method of extension of Cuitiiio and Ortiz (1992) enables the damage model to be con­
veniently formulated for small strains. We begin by considering the perfectly brittle case
and address the issue of elastoplastic coupling subsequently.

Let Xrepresent the fraction of area which has been fractured on average on a typical
meridional plane. The limit of X= 0 corresponds to the absence of cracking, in which case
the stress state is axisymmetric, while the limit X= I represents fully cracked conditions
resulting in plane stress behavior. The dependence of the stress-strain relations on the
structure parameter Xis postulated to be

(38)

(39)

(40)

(41)

(42)

(43)

where the third coordinate axis points in the circumferential direction, and Aand 11 are the
uncracked moduli of the material. As required, in the limit of X---+ 0, (38--43) reduce to
axisymmetric stress-strain relations, while in the limit of X---+ 1, (38--43) degenerate to their
plane stress counterparts.

Introducing the effective stresses and strains

_"'! e"'! __(J 13
(Jel""2 = (J I 2 , (J JJ

13 - 1 '-x

eJJ_~
(J33 - 1 '-X

eJJ_~
(J23 -

I-X
(44)

eqns (38--43) can be conveniently rewritten as

(45)

(46)

(47)

(48)

(49)

(50)

(51)
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Thus, the stress-strain relations are identical to those of an uncracked solid when expressed
in terms of effective stresses and strains. In matrix notation,

(52)

where C is the matrix of uncracked elastic moduli. From these definitions, the stress-strain
relations may be written in physical variables in the form

(53)

where

are the effective moduli of the cracked solid.
The strain energy of the solid follows as

Wee, X) = ~e~l.l· C' eeij = ~e' ceil. e.

The free energy is obtained by adding to (55) the surface energy, with the result

Gc
F(e, X) = Wee, X) + TX

(54)

(55)

(56)

where I is a material property defining the distance between potential meridional cracking
planes (Fig. 10) and Gc is the fracture energy. The driving force for cracking is

of(e, X) aW(Il, x) Gc

J = - oX = - ox - T'

A simple kinetic equation for Xis

(57)

Fig. 10. Radial cracking pattern.
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(58)

where B is a kinetic coefficient. The rate-independent limit may be attained by letting B ~ 0,
which leads to the usual Kuhn-Tucker loading-unloading conditions

I ~ 0, X~ 0, IX = O. (59)

A discretized form of the rate-independent kinetic relations is the energy balance equation

(60)

which yields Xn+ I subject to the irreversibility condition Xn+ I > Xn' This completes the
definition of the model in the absence of plasticity.

In quasi-brittle materials, processes of elastic degradation and plasticity may operate
simultaneously. The two mechanisms may be expected to be coupled in general. A simple
model of elastoplastic coupling consists of formulating the laws of plasticity in terms of
effective stresses and strains, (Jeff and f',eff respectively (Ortiz and Popov, 1982). The resulting
updates are also particularly simple. The given strains f',n+ 1 are first converted into effective
strains using (45). A conventional elastic-plastic stress update, i.e., an update at fixed
moduli, then follows. Finally, the resulting stresses and plastic strains are interpreted as
effective values and the physical counterparts are computed through (44) and (45). Through­
out these steps, the structure parameter is treated explicitly and held constant at Xn­
Following the stress update, the structure parameter can be updated by means of (60).

7.3. Fracture time dependence
The rate dependent character of the spall strength has been experimentally established

for rocks (Grady and Kipp, 1979; Kipp et al., 1980) and ceramics (Lankford, 1977, 1983).
In these materials, the spall strength is found to be roughly proportional to a power of the
strain rate. Within the framework ofa cohesive fracture model, this effect can be investigated
by considering a spall plane at x = 0 which is reached at t = 0 by an incident square pulse
of magnitude (]"n and duration r, Fig. 11. The corresponding incident velocity is given by

(61)

where c is the wave speed. Imagine that the spall plane is populated by a colinear array of

c
~

in Incident \
a Wave l¥ Flaws

I- ~I :1 x

x=O
Fig. II. Configuration for determining fracture time dependence.
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flaws. If (fin> (fIn the flaws grow and the resulting effective opening displacement b is related
to the stress acting on the spall plane through a cohesive law such as formulated in Section
7.1 (Ortiz, 1988). When the opening displacement reaches the critical value ber the flaws
coalesce and the spalling is complete.

When the incident wave impinges upon the spall plane, reflected and transmitted waves
are induced of amplitudes

(62)

(63)

where a-, v- and a+, v+ are the stresses and particle velocities of the reflected and
transmitted waves, respectively. Equilibrium across the spall plane requires

(64)

The cohesive law (32) with ao = air furnishes the additional relation

(65)

The opening velocity follows from compatibility as

(66)

Equations (61-66) can be combined to obtain

(67)

The solution of this equation for an initial value a+ (0) = arr ~ a in is

(68)

where

(69)

is a characteristic relaxation time. From the conditions b = bcr or, equivalently, a+(tlr) = 0,
the time to spall llr follows in the form

(70)

For a given pulse duration, !, the incident stress amplitude a in needed for spall to occur is,
therefore,
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(71)

This relation is shown in Fig. 12. Evidently, as the pulse duration decreases the pulse
amplitude required to cause spall increases without bound. This effect results in an apparent
spall strength enhancement at high rates of loading. Contrariwise, as the pulse duration
increases, the pulse amplitude required to cause spall approaches asymptotically the quasi­
static spall strength afro

8. DYNAMIC FRACTURE TESTS

8.1. Spall tests
As a first test of the model, we consider planar spall experiments such as performed

by Grady and Kipp (1979) and Ahrens and Rubin (1993) to study the impact fracture
properties of rock. For simplicity, we assume that the impactor-plate system deforms in
uniaxial strain. This mode of deformation can conveniently be described by means of the
simple axisymmetric meshes shown in Fig. 13. A steel impactor is assumed with a Young's
modulus E = 200 GPa, a Poisson's ratio v = 0.29, a mass density p = 7800 kg/m3, and a
dilatational wave speed Cd = 5797 m/s. The impactor strikes an alumina plate with a
Young's modulus E = 260 GPa, Poisson's ratio v = 0.21, mass density p = 3690 kg/m3

,

fracture energy Gc = 34 J/m2
, a fracture stress afr = 400 MPa, and dilatational wave speed

Cd = 8906 m/s. The impactor strikes with an initial velocity of 30 m/s. The radial dis­
placements are constrained on the outer radius of the mesh, which is set at 0.1 mm.

Figure 13a shows the fracture patterns obtained with a coarse mesh. Two main
fractures at X = 0.4 mm to X = 0.5 mm develop in this case. By way of comparison, an
elastic wave analysis predicts a spall plane to develop at X = 0.46 mm (Fig. 15). Therefore,
the calculations match the location of the spall plane within the resolution of the mesh.
The elastic analysis also shows that, owing to the higher impedance of the steel impactor,
it remains in contact with the plate even after the tensile wave (that has been formed by
the two interacting release waves) reaches the impactor-plate interface. Noticeably more
fractures are created when a finer mesh is used in the calculations, Fig. 13b. This owes
mainly to the presence of nearly transverse diagonal element sides, which fracture readily.
The number of cracks is again reduced when the cohesive stresses are assumed to drop
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Fig. 14. Free surface velocity of plate for different cases,

suddenly to zero following the attainment of the fracture stress, Fig. 13c. In this case,
unloading waves are induced at the fractures which tend to suppress further cracking in
neighboring planes.

The particle velocity on the rear surface of the alumina plate is shown in Fig. 14. A
purely elastic calculation is in fair agreement with the analytical solution derived from the
t - X and (J - V diagrams shown in Figs 15 and 16, respectively. When fracture occurs, the
rear surface velocity record takes the form of a pullback signal (Grady and Kipp, 1979),
and the minimum velocity is markedly above the elastic value. Assuming vanishing cohesive
stresses, the calculated pullback velocity is 22 mis, which closely matches the elastic pre­
diction of 20.66 mis, Fig. 16. When cohesive stresses are taken into account, the calculated
pullback velocity reduces to 20 m/s. This reduction reflects the nonvanishing work of
separation expended at fractures.

8.2. Double cantilever beam tests
The double cantilever beam test (Kanninen, 1973, 1974; Hellan, 1978a, b; Kamath,

1987; Freund, 1990) provides an effective means of assessing the ability of the model to
propagate cracks dynamically. We additionally use this test as a vehicle for investigating
issues of mesh size dependency.

The specimen is loaded symmetrically in mode I, which enables the calculations to be
restricted to one half of the specimen, Fig. 17. The specimen is assumed to deform in plane
stress. The beam has a depth of 200 /lm and an initial crack length of 400 /lm. The specimen
is extended to a length of 0.012 m so as to minimize wave reflections from the end. The
material is an alumina of Young's modulus E = 260 GPa, a Poisson's ratio v = 0.21, a
mass density p = 3690 kg/m" a fracture energy Gc = 34 J/m2

, a dilatational wave speed
Cd = 8906 mis, a shear wave speed c, = 5397 mis, and a Rayleigh wave speed CR = 4911
m/s. For a Dugdale-Barrenblatt model I crack (Dugdale, 1960; Barrenblatt, 1962), in
which the cohesive stress takes a constant value (Jaee up to a critical opening displacement
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Fig. 15. Plate impact: Lagrangian I-X diagram.
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Fig. 16. Plate impact: stress-particle velocity diagram.

ber and vanishes thenceforth, the size of the cohesive zone for quasistatic loading is (Rice,
1968):

n E GcR=-----.
8 I - v2 (]'~ve

(72)

Inserting aave = atrl2 in this relation yields the estimate R = 88 J-lm. In calculations we use
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Fig. 18. Double cantilever beam: h = 25 Ji.m and Wo = 4 Ji.m.

mesh sizes h = 25, 50, 100,200,400 11m. Evidently, the fine meshes resolve R, whereas the
coarse ones do not. The analysis is conducted in two steps. Firstly, the beam tip is opened
statically to Wo = 4 11m. Secondly, the tip of the beam is held fixed and the crack is allowed
to run dynamically in accordance with the cohesive law.

The crack tip position history for a mesh size h = 25 11m is shown in Fig. 18. Several
stages of propagation can be discerned in the figure. During a first stage of 0.26 IlS the
crack propagates at a roughly constant speed of 1660 mis, with a slight deceleration
occurring at the end of the interval. Early in this stage, stress waves emitted from the crack
tip traverse the depth ofthe beam and reflect from the free surface. After a few reverberations
the continuum response is gradually replaced by beam-like behavior. In addition, shear
waves travel from the initial crack tip to the fixed support at the tip of the beam and, upon
reflection, catch up with the propagating crack tip and cause it to pause. The time of travel
of the shear waves is approximately 0.24 IlS. Hence, the arrival of the reflected shear wave
to the crack tip signals the end of the first stage of propagation. It also follows that this
transition is strongly dependent on the length and depth of the beam. The crack then
accelerates up to an average speed of 1720 mls in the interval t = 0.26-0.8 IlS. As more of
the initial energy stored in the beam is expended in the creation of new surface, the crack
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Fig. 19. Double cantilever beam: crack tip positions for meshes with h = 25,50,100,200 /lm and
It'o = 4/lm.

tip slows down considerably. Beyond t = 0.8)ls the crack tip velocity stays roughly constant
at 300 m/s. Finally, the crack arrests at t = 1.24/ls.

Figure 18 also displays the history of strain, kinetic and cohesive energies. Initially,
the strain energy dips sharply as it is transformed into kinetic energy. Following this initial
transient, the strain and kinetic energies settle into a fairly sinusoidal variation reflecting
the fundamental mode of vibration of the beam. The cohesive energy increases in direct
proportion to the crack length and attains a maximum of 75% of the initial strain energy
at crack arrest.

Figure 19 exhibits the effect of increasing mesh size on propagation. To facilitate
comparison of results at different mesh sizes, we scale the wedging displacement Wo so as
to maintain constant the initial strain energy stored in the beam. The results for h = 50 /lm
and h = 25 /lm are in fairly close agreement, which is suggestive of convergence with
decreasing mesh size. As the mesh is coarsened to h = 100 and 200 /lm, both of which
exceed the characteristic cohesive zone size of 88 /lm, the crack tip slows down markedly
and arrests prematurely. For a mesh size h = 400 )lm, the crack fails to propagate altogether,
as the stress at the tip stays below the fracture stress at all times.

The effect of a higher initial strain energy is demonstrated by increasing the wedging
displacement to Wo = 12 /lm, which results in a ninefold increase in strain energy. Figure
20 evidences the same early stages of propagation as in the previous case: a first stage with
an average crack speed of 2200 mis, followed by propagation at a fairly constant speed of
2300 m/s. These velocities correspond to nearly half the Rayleigh wave speed of CR = 4911
m/s. The cohesive energy stays below 10% of the initial strain energy in the interval of
time considered. In contrast to the lower energy calculation, however, the effect of mesh
coarsening is now less severe, and the gross features of the crack tip motion are reproduced
by the coarse mesh calculations, Fig. 21. It may therefore be concluded that the mesh
dependency of the crack tip is lessened in situations in which the total energy driving the
motion is greatly in excess of the cohesive energy required to fracture one additional
element.
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Fig. 20. Double cantilever beam: h = 25 /lm and Wo = 12 /lm.
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9. PELLET IMPACT EXPERIMENTS

Ceramics are presently being evaluated as potential armor materials due to their high
hardness and low density. Other properties of ceramics, such as their high melting point,
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Material

Steel
Alumina

G. T. Camacho and M. Ortiz

Table I. Mechanical material constants

p (kg/m3
) E (GPa) v rTy (GPa) ml m2 n 8, (S-I)

7800 201 0.30 4.0 40 5 10 2 X 10'
3690 260 0.21 5.0 40 4 10 3 X 103

Table 2. Elastic wave speeds

Material

Steel
Alumina

Cd (m/s)

5797
8906

C, (m/s)

3100
5397

CR (m/s)

2871
4911

Table 3. Fracture material constants

Material

Steel
Alumina

1.5
0.4

4074
34

{3,

0.0
0.0

0.25
0.25

I (/lm)

100
100

Table 4. Equation of state constants

Material

Steel
Alumina

r

1.16
1.0

K] (GPa)

163.9
149

K2 (GPa)

294.4
149

KJ (GPa)

500.0
0.0

Table 5. Thermal constants

Material

Steel
Alumina

C (W/m/K)

477
795

k (J/kg/K)

38
26

Cl (JK)

0.00071
0.00049

To (K)

293
293

excellent wear and corrosion resistance make them attractive in certain structural appli­
cations such as turbine blades. In operation, the blades suffer frequent impacts by pellet­
like objects and the resulting damage can limit the life of the component. In order to
appraise the impact resistance of ceramics, Field (1988) shot pellets of a range of materials,
including steel, tungsten carbide and lead, into ceramic and glass plates. Field examined
the fracture patterns in the plate, which included large conical fragments, as well as the
failure mechanisms in the pellets. In this section we apply the theory developed in the
foregoing to the simulation of pellet impact experiments.

9.1. Problem definition
In order to have a direct comparison with observations, we consider one of Field's

tests consisting of a 5 mm diameter hardened steel pellet impacting a Sintox alumina plate
of 8.6 mm in thickness and 50 mm in diameter. The material properties of pellet and plate
are collected in Tables 1-5. Due to the paucity of experimental measurements, we have had
to estimate some of the constants from related material data found in the literature. A
purely tensile failure criterion is adopted by setting f3r = 0 in the computation of the effective
stress (Jeff. The distance I between potential meridional fracture planes is assumed to be 100
J.lm. An initial flaw size of 18 J.lm in the alumina yields a fracture stress of (Jfr of 400 MPa,
and a fracture energy Gc of 34 J/m2

, both of which are in the range of observation (Grady,
1994). A friction coefficient J.l of 0.25 is assumed between all contact surfaces.

The mesh size is set as h = 250 J.lm, which results in an initial mesh of 16,612 nodes
and 8,146 elements. We start by meshing the domain by the advancing front method, which
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results in fairly uniform element sizes. The corner nodes of the elements are then displaced
in random directions and magnitudes of up to h12, so as to introduce an element of
randomness in the fracture process. A coarse model of mesh size h = 360 Ilm, comprising
7,494 nodes and 3,636 elements, is shown in Fig. 22. This coarse mesh is used for assessing
the degree of mesh size dependency of the solution, as discussed subsequently. Simulations
are conducted for impact velocities Voof 300 and 500 mis, which are in the range of Field's
experiments (Field, 1988). An intermediate impact velocity of Vo = 400 mls has been
simulated (Camacho, 1996) but will not be reported here.

9.2. Fracture patterns
The calculated fracture evolution is shown in Figs 23 and 24. In the spirit of our

axisymmetric model, we exhibit the meridional cracks explicitly and the radial cracks
through level contours of the damage variable X. Shortly after impact, surface flaws just
outside the contact region grow into the interior of the plate driven by large tensile radial
stresses. However, due to the rapidly expanding radius of contact between the pellet and
the plate, these early surface cracks soon become subjected to predominantly compressive
stresses and most of them arrest. Eventually, one surface crack continues its growth and
develops into a conical crack with a well-defined semi-apex cone angle, henceforth simply
termed cone angle. One or two additional extended conical cracks subsequently emanate
from the leading edge of the spreading contact region. The occurrence ofnested cone cracks
has been consistently observed by Field (1988) in boron carbide plates. Tsai and Kolsky
(1967) made similar observations in their steel pellet-glass plate impact experiments. The
number of cone cracks increases with impact velocities due to the larger size attained by
the contact region. The cone cracks propagate initially at fairly constant angles. As cone
crack tips begin to interact with waves reflected from the rear surface of the plate the cone
angle begins to increase. Eventually, the cone cracks reach the rear surface and conical
fragments are detached from the plate. Conical fragments composed of single or double
cones have indeed been recovered after impact by Field (1988).

In addition, radial damage spreads downward from the contact and eventually reaches
the rear surface of the plate. The pattern of radial damage under the pellet approximates
the median vent cracks which are observed to develop in impact or indentation tests (Evans
and Wilshaw, 1977; Lawn and Wilshaw, 1975). Cylindrical cracks also develop early on
near the axis and propagate downward from the contact. Similar cylindrical cracks propa­
gate upward from the rear surface at later times driven by tensile bending stresses. To
complete the pattern, lateral cracks initiate by branching from the cylindrical cracks. The
growth of these cracks is promoted by reflected tensile waves and by relief waves following
contact unloading. The resulting fracture pattern qualitatively agrees with the observations
of Evans and co-workers (1977,1978), Lawn and Wilshaw (1975) and Shockey et al. (1990b).

The pellet yields plastically and flattens at the contact with the plate, with maximum
plastic strains of the order of 20% at 300 mls and 60% at 500 m/s. Due to the pellet's
brittleness, internal cracks initiate and propagate at roughly right angles to the principal
tensile stresses. Eventually, axisymmetric fragments with heavy radial damage form due to
the outward radial motion of the pellet. The extent of fragmentation of the pellet increases
with the impact velocity, in keeping with Field's observations (1988) and the sphere fracture
experiments of Arbiter et al. (1969).

9.3. Effect of impact velocity
As the impact velocity is increased, a larger number of cracks initiate and propagate

into larger regions. In addition, the speed of propagation of the cracks increases. Thus, at
Vo = 300 mis, the crack tip speed of the inner cone crack is in the order of 4000 mls or 81 %
of the Rayleigh wave speed cR , Fig. 23. At Vo = 500 mis, the same crack tip speed increases
to 4600 mls or 94% of cR , Fig. 24, which approaches the theoretical limit. The outer cone
cracks propagate more slowly than the inner cone cracks, and their propagation speed also
increases with the impact velocity. Thus, the speed of the outer crack tip is in the order of
2900 mis, or 59% of CR, at Vo = 300 mls and 3300 mis, or 67% of CR, at Vo = 500 m/s.
These results are to be contrasted with the recent work of Strassburger and Senf (1994),
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who have studied the relation between fracture and wave propagation in glass and ceramic
tiles impacted edge-on by blunt cylindrical steel projectiles. Strassburger and Senf report
damage velocities in alumina, e.g., propagation velocities of the fastest fracture observed
or, alternatively, the mean velocity of a fracture front, approaching the dilatational wave
speed for an impact velocity of 200 mis, but these are subject to interpretation.

The extent of surface damage under the contact is noticeably larger for the impact
velocity of Va = 500 mis, Fig. 24. In particular, considerable fragmentation, including some
ejecta at the edge of the contact region, takes place in this case. The calculated inner cone
angle is sensitive to the impact velocity, while the outer cone angle remains close to the
quasi-static value of approximately 64° independently of the impact velocity. At Va = 300
mis, the initial inner cone angle is 32° and the base radius is 8 mm. At Va = 500 mis, two
inner cone cracks are observed at roughly 45 Cl and a base radius of 11 mm. These results
are in excellent agreement with the observations of Field (1988), who reports an average
cone angle of 35c and a mean base radius of 8 mm at Va = 300 mis, and a cone angle of
47° and a base radius of 13 mm at Va = 500 m/s. The development of conical cracks in
ceramic plates under impact, and the increase of the cone angle with impact velocity, have
the beneficial effect of spreading the load transmitted by the projectile (Wilkins, 1978;
Field, 1988), in sharp contrast to metallic armor where the radius of the perforation is
constant through the depth of the plate and comparable to the radius of the projectile.

9.4. Effect afmesh size
We have investigated the mesh-size sensitivity of the solution. Results for a mesh size

of h = 300 pm are reported in Camacho (1996), which may be consulted for details. The
solutions obtained on this mesh are essentially unchanged from those described in the
foregoing for a mesh of h = 250 flm, which suggests a certain degree of convergence. It
bears emphasis that a mesh size of 250 flm is not sufficient to resolve the quasistatic cohesive
zone size of 88 flm in the ceramic plate. However, as demonstrated by the double cantilever
beam tests of Section 8.2, good accuracy is still obtained under these conditions if sufficient
strain energy is available to drive crack propagation. As shown in the following section,
the cohesive energy expended in the creation of new surface is a small fraction of the energy
input into the plate, which accounts for the limited mesh-size sensitivity up to h = 300 flm.

By way of contrast, considerable accuracy is lost when h is increased further to 360
flm. The solutions for Va = 300 and 500 mls obtained from this coarse mesh are shown in
Figs 25 and 26. At 300 mis, mesh refinement is seen to result in a smooth and connected
inner cone crack and increased branching of the outer cone cracks. Some of the branching
which develops in the outer cone crack at 500 mls is also suppressed in the coarse mesh
solution. Cracks which undergo profuse branching and resemble a "fir tree branch" have
been observed and classified by Strassburger and Senf (1994). Field (1988) in turn observed
that the upper portion of the recovered inner cones has a relatively smooth surface, whereas
the lower portion becomes increasingly rough due to stress wave interactions. It therefore
appears that the coarse mesh size of 360 flm results in premature crack arrest leading to
reduced branching of the outer cone crack and a disconnected inner cone crack.

Mesh refinement also partially suppresses the cracking and fragmentation near the
axis. This effect is attributable to the development of a connected inner cone crack in the
fine mesh solution, which relaxes more effectively the stress thus preventing extensive radial
cracking from occurring. The progression of radial damage is somewhat retarded at early
times by mesh refinement. Overall, however, the radial damage distribution is less sensitive
to the mesh size than the discrete conical crack patterns.

9.5. Stressfields
Further insight into the failure mechanisms and their dependence on the impact velocity

may be derived from an examination of the stress fields. Vector and contour plots of the
principal stress more closely aligned with the circumferential direction are shown in Fig.
27. The remaining principal stresses are predominantly compressive and therefore do not
contribute to fracture. In order to render the stress fields more readily interpretable, fracture
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is not allowed for in these calculations. The elastic P, Sand SP (head) waves induced by
the pellet impact are superimposed on these plots for reference. It is observed that the
principal stress is compressive near the P-wave front, changes to tensile within a sizeable
annulus and becomes again compressive near the contact. It is evident from these fields
that conical cracks initiate and propagate mainly in the tensile annular region. This is in
keeping with the experiments of Fourney et ai. (1975), in which circumferential tensile
stresses radiating from a center of dilatation were found to be responsible for the initiation
and propagation of circumferential cracks. It is also observed in Fig. 27 that the size and
distance to the axis of the region of high tensile stresses increase with impact velocity. This
in turn accounts for the tendency of the inner cone crack angle to increase with impact
velocity.

Figure 28 shows the principal stress distributions which are obtained when fracture is
allowed for. As expected, the magnitude of the tensile stresses is now noticeably lower.
Nonetheless, the shift of the high tensile stress regions away from the axis with increasing
impact velocity noted above, and the corresponding increase in cone crack angle, take place
in the presence of fracture as well. It is also noteworthy that the fracture front in the 500
mls case remains close to the S-wave front, which suggests a speed of propagation of the
fracture front approaching the Rayleigh wave speed.

9.6. Energy distribution
The manner in which the kinetic energy supplied by the pellet is transferred into the

system is of considerable interest. Figures 29 and 30 show the variation of kinetic energy,
work of deformation, plastic work, and fracture energy, given in the expressions

K= ftf ~Polvl2dVodt
Jo Bo

w = ftf t': d d Vodt
Jo Bo

W p = ft J tiff d Vo dt
Jo Bo

r = ft f t coh 'vdSodt
Jo aBo

(73)

(74)

(75)

(76)

where t' is the Kirchhoff stress, Ii is the equivalent Mises stress, Y' is the equivalent plastic
strain rate and t coh are the cohesive tractions. The minimum of the kinetic energy, the
maximum in the work of deformation, and the saturation of the plastic work, occur
simultaneously with the point of maximum indentation by the pellet.

Remarkably, despite the profuse cracking, the fracture energy amounts to an exceed­
ingly small fraction, of the order of 1.5%, of the initial kinetic energy. By contrast, 44% of
the initial kinetic energy at 300 mis, and 50% at 500 mis, is dissipated as plastic work,
mostly in the steel pellet. The alumina plate experiences minimal plastic deformation
primarily confined to a small region under the contact. The difference between the initial
kinetic energy and the sum of the kinetic energy, work of deformation and fracture energy
is the energy dissipated by friction. This energy is negligibly small at 300 mls but amounts
to a sizeable 10% of the initial kinetic energy at 500 m/s. The kinetic energy left in the
system is 36% of the initial kinetic energy at 300 mis, and 32% at 500 m/s. Evidently, this
reduction is the result of increased inelastic dissipation at the higher impact velocity.
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10. SUMMARY AND DISCUSSION

We have developed a computational capability which enables detailed predictions of
the progression of dynamic fracture and fragmentation in brittle materials subjected to
impact. In a departure from past approaches to fragmentation, which treat the commuted
phase as a homogeneized continuum, we follow the nucleation and propagation of discrete
cracks by recourse to a cohesive fracture model. In axisymmetric calculations, however, we
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account for radial cracking by a distributed damage model. The efficient enforcement of
contact and friction between many bodies plays a key role in the capability. In particular,
maintenance of a hierarchical system representation of the multi-bodies is essential for
computational efficiency. Detailed comparisons with standarized dynamic fracture tests
and with pellet-plate impact experiments demonstrate the power, versatility and predictive
ability of the method.

Some of the limitations of the method should be carefully noted. The simulations
presented are based on fixed meshes. This necessarily limits the number of available paths
for fracture, possibly resulting in some biasing of the propagation directions. Because of
the ability of the cracks to branch, however, paths which are not exactly coincident with
mesh lines can be approximated as ajagged trajectory. This seems to alleviate the directional
biasing to a considerable degree, as demonstrated by the good agreement of the calculated
cone crack angles with Field's data (Field, 1988). Similar conclusions have been drawn by
Xu and Needleman (1994). An additional shortcoming of working with a fixed mesh is that
the initial elements in effect constitute the finest fragments which can be formed during the
calculation.

These limitations can be overcome by recourse to adaptive meshing. By suitable local
refinement at crack tips, the number of propagation directions available to the cracks can
be substantially increased (Marusich and Ortiz, 1994). In addition, local refinement can be
used to adequately resolve the crack tip fields, which may help to prevent premature crack
arrest. One-element fragments can be remeshed into several elements, allowing the fragment
to subdivide further (Camacho, 1966). This feature plays an important role in simulations
of ballistic penetration of ceramic plates, which often result in a broad distribution of
fragment sizes (Woodward et al., 1994).
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APPENDIX A. CONSISTENT COMPUTATION OF NODAL TRACTIONS

Let r be an oriented internal boundary of the mesh. Let s denote the arc-length measured along r. Let D(S)
be the exterior unit normal to r. The distribution t(s) of tractions on r is discretized in the form

t,(s) = L tiaNa(s)
aonr

(AI)

where ta are the nodal tractions and NaCs) is the restriction of the global shape function Na to r. To determine to

multiply (AI) by Na(s) and integrate over r to obtain

(A2)

where

(A3)

are coefficients with units of length. The right hand side of (A2) can be evaluated by writing t i = (JiJl)' where (Ji)

are the components of the Cauchy stress tensor, and integrating by parts, with the result

(A4)

where m~ is the lumped mass of node b contributed by element e and the sum extends to all elements e adjacent
to r and B~ is the usual B-matrix. Note that we consider only the elements on the side of r. It should also be
carefully noted that, owing to mass lumping, inertia forces contribute directly to the balance of linear momentum
of the surface. Solving (A2) gives

tia = L m::i,If,O"
bon r

(A5)

Again, it should be carefully noted that the forces fa are to be assembled from elements lying on one side of r
only (the other side can be treated likewise). The inversion of Wab can be provided by recourse to lumping. Let

(A6)

Then (A5) can be replaced by

(A7)

The weights W a may be interpreted as the length of r tributary to node a.


